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Studying and approximating spatio-temporal
models for epidemic spread and control

J. A. N. Filipe* and G. J. Gibson
Biomathematics & Statistics Scotland,The King's Buildings (JCMB), Edinburgh EH9 3JZ, UK

A class of simple spatio-temporal stochastic models for the spread and control of plant disease is
investigated. We consider a lattice-based susceptible^ infected model in which the infection of a host
occurs through two distinct processes: a background infective challenge representing primary infection
from external sources, and a short-range interaction representing the secondary infection of susceptibles
by infectives within the population. Recent data-modelling studies have suggested that the above model
may describe the spread of aphid-borne virus diseases in orchards. In addition, we extend the model to
represent the e¡ects of di¡erent control strategies involving replantation (or recovery). The Contact
Process is a particular case of this model. The behaviour of the model has been studied using cellular-
automata simulations. An alternative approach is to formulate a set of deterministic di¡erential equations
that captures the essential dynamics of the stochastic system. Approximate solutions to this set of
equations, describing the time evolution over the whole parameter range, have been obtained using the
pairwise approximation (PA) as well as the most commonly used mean-¢eld approximation (MF).
Comparison with simulation results shows that PA is signi¢cantly superior to MF, predicting accurately
both transient and long-run, stationary behaviour over relevant parts of the parameter space. The
conditions for the validity of the approximations to the present model and extensions thereof are
discussed.

Keywords: spatio-temporal stochastic models; primary and secondary infection; epidemic control;
Contact Process; cellular-automata simulation; pair approximation

1. INTRODUCTION

In recent years mathematical models have played a major
role in contributing to our understanding of spatio-
temporal processes in epidemiology, ecology or biological
pattern formation. While deterministic models have been
most often studied, there is also a long history of
stochastic spatio-temporal modelling (e.g. Mollison 1977;
Durrett & Levin 1994; Shaw 1994, 1995; Gibson 1997).
Since extensive simulation of spatio-temporal stochastic
models can be computationally demanding, a major
challenge has been to characterize the behaviour of the
models analytically or using approximation methods. For
example, the pairwise approximation (PA), a member of
the general family of cluster approximations, has been
frequently used to study stochastic processes in physical
systems (e.g. Dickman 1986; Nord & Evans 1985;
Ben-Naim & Krapivsky 1994; Filipe & Rodgers 1995),
and more recently its application has been extended to
biological systems (e.g. Sato et al. 1994; Levin & Durrett
1997).

Many existing results on spatio-temporal stochastic
models relate to long-term or large-scale behaviour.
Theoretical questions studied for epidemic models include
thresholds between persistence and extinction (e.g. Buttell
et al. 1993), or the asymptotic shape and velocity of a
spreading cluster (e.g. Cox & Durrett 1988). However, in

practical applications, such as assessing strategies for
controlling a plant disease epidemic, it may be important
to understand system behaviour at smaller spatial and
temporal scales and to consider transient as well as
asymptotic dynamics. In particular, the development of
small-scale spatial structure can signi¢cantly a¡ect the
progress of a disease. Also, in agricultural systems
epidemics may not reach stationarity. Motivated by these
considerations, we investigate the use of the simplest
cluster approximations (mean-¢eld (MF) and pairwise)
to represent both transient and asymptotic behaviour of a
stochastic spatio-temporal susceptible^infected model for
the spread and control of a disease in a population. The
model incorporates both primary infection from sources
external to the population and the secondary infection of
susceptibles by infected individuals within the population
through local interactions. This choice is motivated by
the recent study by Gibson (1997) which suggested that
experimental observations of the spatio-temporal spread
of citrus tristeza virus (CTV) disease, an aphid-borne
virus disease of citrus trees, could be explained by a
model of this kind. In addition, the model represents the
e¡ect of control measures. This paper also generalizes
some aspects of work by Levin & Durrett (1997), who
used cluster approximations to study asymptotic proper-
ties of the Contact Process (Harris 1974), a special case of
the model considered here.

Following a description of the model in ½ 2, we derive
the corresponding MF and PAs to it in ½ 3. In ½ 4 these
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approximations are compared with each other and with
simulation of the stochastic model. In particular we show
that PA is in general signi¢cantly superior to MF in
predicting both long-run and transient behaviour.
Importantly, for many parameter values the PA predicts
accurately the asymptotic and transient behaviour of the
stochastic simulation model. Discussed in ½ 5.

2. SPATIO-TEMPORAL STOCHASTIC MODEL FOR

THE SPREAD AND CONTROL OF AN EPIDEMIC

We consider a stochastic model for the transmission
and control of a disease through a population of
individuals located at the vertices of a regular square
lattice, with a single individual at each vertex. Each
individual, or site, may be in one of two states: susceptible
or infected. The state of a site x � (i, j) at time t is given
by Sx(t), where Sx(t) � 0 if x is susceptible, and Sx(t) � 1
if x is infected.We impose ¢xed boundaries on the lattice,
so that almost every individual in the lattice has z � 4
nearest neighbours (NNs), except those on the boundary
which have z � 3 or z � 2 NNs.

The dynamics of the model are speci¢ed as follows and
involve four parameters: J1, J2, R, and � � 0, 1. A
susceptible individual acquires the disease through
primary infection (background) at rate J1 per unit time
and through secondary infection by infected neighbours
at rate J2 nx(t), where nx(t) denotes the number of NNs of
x which are infected at time t. Disease control is e¡ected
through a continuous monitoring process such that if
Sx(t) � 1, then the probability that the infection at x is
discovered in the time interval (t, t � dt) is equal to R dt.
The action taken immediately on discovery of an
infection is determined by the value of �. If � � 0, then
the infected individual at x is replaced by a susceptible
individual. If � � 1 then, in addition to the replacement
of x, all infected NNs of x are replaced with susceptible
individuals (NN recovery). (It is conceivable that � could
vary between 0 and 1, in which case NN recovery would
occur with probability �.) Thus infection and recovery,
during a small time interval (t,t � dt), are governed by
the conditional probabilities

Prob�Sx(t � dt) � 1jSx(t) � 0� �Prob(0! 1; x, t)
�� J1 � J2 nx(t)�dt, (1)

Prob�Sx(t � dt) � 0jSx(t) � 1� �Prob(1! 0; x, t)
�R �1� � nx(t)�dt. (2)

This infection process is a limiting case of the more
general model considered by Gibson (1997) in which
secondary infection could occur through interactions
beyond NNs. This replacement strategy is clearly idea-
lized. Our principal aim is to investigate how well a
spatially extended stochastic model might be represented
by deterministic approximations rather than to provide
accurate quantitative predictions of a real system. Never-
theless, the cases � � 0 and � � 1 are of some practical
interest in that they represent control strategies which
respectively ignore and take some account of spatial
correlation in a pattern of disease. We note that the
contact process (Harris 1974) is a special case of the
above model, corresponding to J1 � 0 and � � 0.

As the time units are arbitrary there are only three
independent parameters in the model, say, J1/R, J2/R
and �. Therefore, without loss of generality we set R � 1
throughout so that the expected time elapsed between
infection and recovery of a given site, in the absence of
NN recovery, is one unit of time.

Given J1, J2 and � we simulate a realization of the
model by specifying the nature, location and times of
the infection or replacement events which occur as
follows. Suppose at time t we know the state of each site
in the lattice. First, the time until the next event, �t, is
simulated from an exponential distribution with mean
1/�Rn1 � (J1n0 � J2n01)�, where n0 and n1, respectively,
represent the total number of susceptible and infected
individuals in the lattice and n01 denotes the number of
NN pairs in the lattice for which one individual is
infected and the other susceptible. The current time t is
incremented by � t.

Next the nature of the event occurring at t ��t is
determined. With probability Rn1/�Rn1 � (J1n0 � J2n01)�
this is selected to be the discovery of an infected site and
the particular site is chosen randomly from the set of
infected sites. The site selected then becomes susceptible
and, if � � 1, so do any of its NNs which is infected. If
the selected event is the infection of a susceptible site,
then the site, x, is selected from the set of all susceptible
sites with probability proportional to the infective
challenge experienced by x, i.e. J1 � J2nx(t), and its
status changes to infected.

By repeating this procedure from a set of initial
conditions we generate an explicit realization of the
stochastic model. For a large lattice the number of events
which must be simulated to investigate, for example, the
equilibrium behaviour of the model is correspondingly
large. Hence, although computer implementation of the
model is relatively straightforward to obtain, it may be of
limited use in a comprehensive study. In the following
section we consider how approximate representations of
model behaviour can be obtained.

3. DETERMINISTIC APPROXIMATIONS TO

SPATIO-TEMPORAL STOCHASTIC MODELS

To derive a simpler model to represent the behaviour of
the stochastic model de¢ned by (1) and (2) we assume
that the lattice is large and that boundary e¡ects can be
ignored. Furthermore, we assume that the distribution of
infected individuals at t � 0 arises from a process that is
spatially stationary and appears uncorrelated over
distances considerably less than the lattice size. Since the
dynamic rules governing the system are spatially
invariant, isotropic and involve no interactions beyond
NNs, we assume that the system remains spatially
stationary at large-enough scales of observation, i.e. that
it exhibits no long-range correlations at all subsequent
times. As a result, ensemble averages over many realiza-
tions of the process, denoted by h. . .i, should coincide
with spatial averages of a quantity for a single realization.

In particular, we consider the densities P �1�(t)� hSx(t)i,
and P �11�(t) � hSx(t)Sx�u(t)i, which denote, respectively,
the probability that x is infected at time t and the
probability that both x and its NN at x� u are infected
at time t. By the above arguments both these quantities
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should be independent of x and the direction of the unit
vector u.

We now derive kinetic equations for the evolution of
these densities with time. The change in hSxi during
(t, t � dt) is given by

dhSx(t)i � h(1ÿ Sx(t)) Prob(0! 1, x, t)i
ÿ hSx(t) Prob(1! 0, x, t)i. (3)

Substituting the conditional probabilities de¢ned in equa-
tions (1) and (2), and noting that nx(t) �

P
u Sx�u(t),

where the sum runs over the z NNs of x, it follows that

dhSx(t)i
dt

� J1 ÿ (J1 � R)hSxi � J2

X
u

hSx�ui

ÿ (J2 � R�)
X
u

hSxSx�ui.
(4)

Using spatial invariance then gives the exact, determi-
nistic equation

dP�1�
dt
� J1 ÿ (J1 � Rÿ zJ2) P�1� ÿ (J2 � R�)z P �11� (5)

The corresponding equation for P�11� is (see Appendix A)
1
2
dP�11�
dt
� (J1 � J2) P �1� ÿ (J1 � J2 � R) P �11�
� J2

X
v0
hSx(1ÿSy)Sy�v0 iÿR�

X
v0
hSxSySy�v0 i,

(6)

where y � x� u is a NN of x, and the v0-sum runs over
the zÿ 1 NNs of y distinct from x.

Note that equation (5) involves P �11�, while equation
(6) involves densities of triplets of adjacent sites. For
example, on a square latticeX
v0
hSxSySy�v0 i � P �111� � 2 P

1 1
1

� �
,

the ¢rst term referring to collinear triplets and the
second to triplets in a right angle. In fact, equations (5)
and (6) are the ¢rst in an in¢nite hierarchy of equations
for the densities of consecutively larger clusters, with each
equation involving terms relating to higher order clusters
so that any subsystem is not closed, a direct consequence
of the interactions in the system.
Cluster approximations (Bethe 1935; Kikuchi 1951) can

be used to approximate a system of equations such as (5)
and (6) with a closed system. In this approach the full
spatial correlations between individuals inside a basic
cluster are incorporated but simplifying assumptions are
made regarding correlations between individuals inside
and outside a cluster. These simpli¢cations allow densities
of clusters larger than the basic cluster to be expressed in
terms of densities of smaller clusters, thereby closing the
system of equations. As long as the system's correlation
length (Yeomans 1992; Stau¡er & Aharony 1992) remains
¢nite it is in principle possible to improve the accuracy of
the approximation by increasing the size of the basic
cluster (Burley 1972; Nord & Evans 1985). However, as the
cluster size increases, the approach becomes increasingly
convoluted and there is no a priori indication of the degree
of the resulting improvement. Nevertheless, low-order

cluster approximations are relatively straightforward to
implement and have proved to yield surprisingly good
descriptions, at least in the absence of large-scale, critical
phenomena. (For a review of cluster approximations
applied to systems in thermodynamic equilibrium see, for
example, Burley (1972).)

Before describing the construction of the two simplest
cluster-approximations, MF and PA, for the system of
equations (5) and (6), we analyse the equations in a
soluble limit. We consider the low-infection regime where
a few infectives are scattered in a sea of susceptibles, i.e.
P �1� � 1 and P �11� � P �1�. In this case all but the ¢rst
terms on the right-hand side of equations (5) and (6) are
small and can be neglected. Not surprisingly the back-
ground infection process dominates over all others, as we
would expect in the early stages of pathogen invasion of a
healthy ¢eld. Starting with zero density of infectives we
¢nd, to leading order,

P �1�(t) � J1 t � . . . , (t � 1), (7)

P �11�(t) � J1 (J1 � J2) t
2 � . . . , (t � 1), (8)

which implies that

limit
t!0

P �11�
P �1�2 � �1� J2=J1� . (9)

This result indicates that even in this non-structured
regime there are correlations between NN infectives as a
consequence of the small, but non-vanishing e¡ect of
NN transmission. The validity of equations (7) and (8)
requires that the time t since the beginning of the
epidemic is small. For ¢xed parameters J1 and J2, the
necessary condition P �11� � P �1� implies the upper
bound t � 1/(J1 � J2).

(a) Mean-¢eld approach
Due to its simplicity, mean-¢eld (MF), the lowest

order, has been the most widely used cluster approxima-
tion in spatial problems. Within the MF approximation
the basic cluster is a single site, so we assume that the
states of any two sites in the lattice are independent of
each other. This implies that

P �11� � P �1� 2. (10)

The resulting lack of consistency with equation (6) is
resolved by simply ignoring the equation.

Using equation (10), equation (5) can be recast as

dP �1�
dt

� a0 ÿ a1 P �1� ÿ a2 P �1� 2, (11)

with

a0 � J1, a1 � J1 � Rÿ zJ2, a2 � (J2 � R�)z. (12)

This is a particular case of Riccati's equation (see, for
example, Stephenson & Radmore 1990), with full
transient solution

P �1�(t) � 1
2a2
�
 tanh(
 t/2� C)ÿ a1� , (13)

with
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 �
��������������������
a21 � 4a0a2

q
�

�����������������������������������������������������
(J1 � R� zJ2)

2 � 4J1R�z
q

, (14)

C � tanhÿ1
2a0 P0 � a1




� �
, (15)

and P0 � P �1�(0) the initial density of infectives. The
asymptotic equilibrium level of infection

P �1�1 �
��������������������
a21 � 4a0a2

p
ÿ a1

2a2
(16)

is obtained on taking the limit t!1 in equation (13). It
is easily veri¢ed that P �1�141 for all parameter values.

The MF solution reveals that the e¡ect of NN recovery
(� � 1) is quantitative: it reduces the fraction of infected
individuals at any time. However, the e¡ect of back-
ground infection (J140) is more dramatic: it prevents
the system from undergoing a phase transition from a
parameter region where the epidemic persists to another
where it dies out. In the limiting case where a0 � J1 � 0,
the solution to equation (11) is

P �1�(t) � P0

exp(a1t)�sgn(a1) �exp (a1t)ÿ1� P0/P �1�1,
(17)

with the equilibrium limit

P�1�1� 0, R5zJ2

ja1j/a2 � (J2 ÿ R/z)/(J2 � R�), R5zJ2

�
.

(18)

While the MF prediction for the critical threshold value
of (J2/R) is independent of �,

(J2/R)c � 1/z, (19)

i.e. it is the same as for the MF approximation to the
Contact Process (� � 0), the asymptotic infection level
above the threshold is reduced as a result of NN
recovery.

Derivations of threshold conditions for disease persis-
tence in non-spatial deterministic models representing
control measures have been carried out by several authors
(e.g. Jeger & van den Bosch 1994a,b; van den Bosch &
Roos 1996).

(b) Pairwise approach
Previous examples of pairwise approximation (PA) of

epidemic models are provided by Sato et al. (1994) and
Levin & Durrett (1997). Here the basic cluster is a pair of
NN sites. The key assumption in the derivation of the
approximation is that for a given site, conditional on its
state, the states of any two of its NNs are independent.
For example, if x, y and z denote the states of three adja-
cent sites this assumption allows us to write

P �xyz��P �xy�P �zjxy� ' P �xy�P �zjy��P �xy�P �yz�/P �y�.
(20)

We can therefore make the following substitutions for
triplet densities in equation (6):X
v0
hSx(1ÿ Sy)Sy�vi � (zÿ 1),

P �10�2
P �0� (21)

X
v0
hSxSySy�vi � (zÿ 1)

P �11�2
P �1� . (22)

These lead directly to the PA given by the set of equa-
tions (equation (5) is unchanged)

dP�1�
dt
� J1ÿ(J1�RÿzJ2) P�1�ÿ(J2 � R�)zP�11� (23)

1
2
dP�11�
dt
� (J1 � J2)P�1� ÿ (J1 � J2 � R)P�11�

� J2(zÿ1)
(P�1�ÿP�11�)2

1ÿP�1� ÿR�(zÿ1)P�11�
2

P�1� .
(24)

It is a straightforward task to solve these nonlinear
equations numerically for given initial conditions. The
equilibrium level of infection can be derived from equa-
tions (23) and (24), by setting their right-hand sides to
zero, recasting equation (23) as

P�11�1 �
J1 ÿ (J1 � Rÿ J2z)P�1�1

(J2 � R�)z
, (25)

and substituting into equation (24) to give a cubic
equation in P �1�1, which can then be obtained as the real
solution satisfying 04P �1�41. (We have checked that
there is only one such solution.) Although this solution
can be obtained analytically, the resulting expression is
convoluted and not given here.

Like the MF approximation, in the absence of back-
ground infection (J1 � 0) the PA displays critical beha-
viour (Yeomans 1992; Stau¡er & Aharony 1992). In this
case the resulting cubic can be solved more easily to give

P �1�1 �
(zÿ1)�(zÿ�)2�z(1���)�z(1ÿ�)ÿ (1��)�

(1� ��)�z2(zÿ 2)�� z(zÿ 1)ÿ �� ,

for J2/R4(J2/R)c, (26)

where � � R/J2, and P �1�1 � 0 otherwise, with (see table1)

(J2/R)c �
1/(zÿ 1) for � � 0

2�/f(1� z�)
�����������������������������������
z�z(1� �)2 ÿ 4��

p
ÿz�z�(1� �)� 1ÿ ��g for �40.

8>><>>:
(27)

The threshold when � � 0 is the same as for percolation
on a tree (Stau¡er & Aharony 1992).

4. COMPARISON OF APPROXIMATIONS WITH

STOCHASTIC MODEL

We now investigate the ability of the MF and pairwise
approximations to capture the behaviour of the full
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stochastic spatio-temporal model over a range of para-
meter values. First we consider the asymptotic value of
P �1� as predicted by simulation and by the MF and PA
from equations (11), (23) and (24). Later in the section,
the ability of the approximations to capture transient
behaviour is investigated.

The simulations were carried out on a two-dimensional
system with a square boundary (¢xed boundary condi-
tions, FBC). Lattice sizes ranging from N � 502 to 3002

were used to probe any systematic dependence of the
results on the system size. As expected, the £uctuations in
the transient curves as well as di¡erences between process
realizations were found to decrease with n. The size of the
system considered depended on the quantities being moni-
tored and on the parameter values input; for example, in
the vicinity of a critical point (Yeomans 1992; Stau¡er &
Aharony 1992) we used larger systems to lower the prob-
ability of extinction.

We also compared the results with simulations on a
torus (periodic boundary conditions, PBC). So far as
asymptotic disease levels are concerned, edge e¡ects were
found to be signi¢cant for N � 1002, but were negligible
for N � 2002. There was, however, a slight delay in the
disease build-up with FBC that appeared to persist even
in the larger systems considered by us. For example, we
compared random realizations of the system with
di¡erent boundary conditions and with N � 2002 and
J1 � 0, in the cases (i) J2 � 1, r � 0 (P�1�1 � 0:72, as in
¢gure 1a), and (ii) J2 � 2, r � 1 (P�1�1 � 0:38, as in
¢gure 1d ), and observed a tendency during the transient
period for the disease level in the FBC system to be lower
than that in the PBC system. The maximum relative
di¡erence between disease levels for the FBC and PBC
systems during the transient period was typically around
5% for parameter sets (i) and (ii).

The following parameter values were used in the simu-
lations: R � 1, J1 � 0, 0.001, 0.01, 0.1; J2 � 0.1, . . . , 5,
� � 0, 1.

(a) Stationary behaviour
Tomeasure the equilibrium level of infection, we increased

the system size as necessary to observe a convincing
stationary behaviour. The system was then simulated in
equilibrium for a large number of time steps (up to
150� 3002) and the resulting series of values of P[1] was
averaged over the total series and over blocks of ¢ve samples.
A check on stationarity was provided by the requirement of
small variationsbetween successiveblock averages.

Figure 1 shows the equilibrium level of infection P�1�1
as a function of J2, for di¡erent values of J1 and �, as
predicted by simulation and the MFand pairwise approx-
imations. Both approximations overestimate the simu-
lated equilibrium values. Since both approximations
neglect, to some extent, spatial correlation in the distribu-
tion of disease, they are expected to overestimate the
degree of mixing of susceptibles and infectives and hence
the e¡ectiveness of epidemic spread. The PA, which
models explicitly the number of `reaction pairs' 1^0, is
always in better quantitative agreement with simulation
and provides accurate predictions over a wider parameter
range than MF.

Some general trends can be discerned from these
results.When � � 0, the PA provides a good prediction of

the simulation results over much of the parameter space.
It is generally less e¡ective when � � 1, but accurate
predictions of simulations are nevertheless obtained for
some parameter values. However, MFapproximations are
particularly poor when � � 1. For a given value of the
asymptotic infection level in the stochastic model the
disparity between approximations and simulation
becomes greater as (i) J2 increases and J1 decreases; and
(ii) � is increased from 0 to 1. Thus, in general, the agree-
ment diminishes as the strength of the local interactions
in either the infection or recovery processes increases.
Note the drop in the disease level (e.g. about 50% for
J2 � 2) when the control strategy corresponding to � � 1
is applied.

When J1 � 0 there is a critical threshold value of J2

separating regions of epidemic persistence and extinction
(¢gures 1a and b)and the performance of the approxima-
tions is particularly poor near this point. This is to be
expected because long-range spatial correlations (as in
¢gure 4) develop in the system at the transition (Stau¡er
& Aharony 1992), while the pairwise approach assumes
exponential decay of pair correlations. Table 1 shows the
thresholds values (J2/R)c from theory and simulation for
� � 0 , 1 (and � � 1=2, for comparison). The consider-
able mismatch between threshold values is not unex-
pected, as argued, but once again the pairwise approach
yields a considerable improvement over the MF predic-
tion, which does not even depend on �. The simulation
threshold for the Contact Process (� � 0) agrees well
with known values reported in the literature (see, for
example, Buttell et al. 1993; the authors use the notation
�c � z(J2/R)c). The corresponding pairwise prediction
also agrees with recent results (Levin & Durrett 1997).

(b) Transient behaviour
To investigate the transient behaviour of the model and

the ability of the approximations to capture it, we
consider ¢rst the evolution of the process on a lattice of
100�100 sites, with parameters R � 1, J1 � 0:01 and
J2 � 0:25, and with � � 0 (¢gure 2a,b) and � � 1
(¢gure 2c,d). This scenario represents a situation where
the strength of the NN interaction is quite large relative
to the background process and leads to a stationary level
of disease under 5% for both values of �. The results of a
study where related models were ¢tted to observations of
virus spread in orchards (Gibson 1997) suggest that for
some real systems the strength of the local interactions
may be considerably lower. Nevertheless, since the di¤-
culty in capturing the dynamics increases with the
strength of local interactions, this scenario is considered
in order to better test the approximation technique.

Two di¡erent initial conditions were considered. In
¢gure 2a,c the simulations were initiated with a small
number of randomly located infections, in 0:1% of the
hosts. This corresponds to a situation where an epidemic
is controlled from the early stages of pathogen invasion
from external sources. In ¢gure 2b,d the system is
initiated with a correlated pattern of disease with 20% of
sites infected. This initial state was generated by iterating
the stochastic model with recovery parameter R set to
zero until 20% infection was attained, at which point the
control was `switched on'. This scenario corresponds to a
situation where the decision to initiate disease control is
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based on disease levels becoming unacceptably high. The
evolution towards the initial non-random pattern is
included to illustrate the epidemic growth in the absence of
recovery and the ability of the approximations to capture
this aspect of model behaviour. Figure 2a,b (� � 0) and
2c,d (� � 1), display di¡erent ways by which the epidemic
level P �1� attains the same stationary controlled level,

about 4% and 1%, respectively (cf. ¢gure 1c, f ). Note the
much faster drop in disease level obtained using the NN-
replacement strategy, � � 1 (¢gure 2d). Comparison is
made with MF and PA: the pairwise estimate of P �1�
follows the simulation very closely. The evolution of P �11�
is also shown (lower curves) with the PA accurately
capturing its evolution for both �-values.
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Figure 1. Phase diagram for P �1�1, with � � 0: (a) J1 � 0; (c) J1 � 0:01; (e) J1 � 0:1; and with � � 1: (b) J1 � 0; (d) J1 � 0:01;
( f ) J1 � 0:1. Simulation (bottom curves), PA (intermediate curves) and MF (top curves).
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A good agreement between the transient behaviour of
the stochastic model and the PA is found over a consider-
able part of the parameter space. The approach has its
limitations, though, so the agreement is not universal. For
example, we compared ¢gure 2a,b with the case where
� � 1 and a similar stationary level of infection is
reached (J2 � 0:8). As NN interactions are over three
times stronger the performance of the PA is poorer
(¢gure 1d). Naturally, we expect infectives to be more
clustered in the latter case. This is illustrated by the
sequences of system snapshots in ¢gure 3, the ¢rst of
which is along the plot in ¢gure 2b. A measure of
patchiness is given by the correlation between NNs,
(P �11�ÿP�1�2)/(P �1�(1ÿP �1�)), and plottings of this were
consistent with the previous statement. In more extreme
situations, i.e. close to the critical point, some assump-
tions of the pairwise approach breakdown completely.
Figure 4 shows snapshots of the system in the stationary
regime, with (J1,�,P�1�1) � (0:001,1,1%), (0,0,4%) and
(0,1,1%). Although the level of disease is similar to
¢gure 3, the patterns show structure characterized by
length scales of the order or larger than the system size.

Some of them (J1 � 0) give clear signs of self-similarity,
typical of power-law decaying correlations.

5. DISCUSSION

For the class of models considered, the results show
that the PA captures well the main features of both tran-
sient and asymptotic behaviour of the full stochastic
spatio-temporal implementation. This is true for a large
part of the parameter space, and in particular in para-
meter regions of practical interest. The MF approach,
on the other hand, is seen to o¡er a generally poorer
description, which illustrates the importance of adopting
spatially explicit models for representing plant popula-
tions.

While we have interpreted the model within a speci¢c
epidemiological context, many other scenarios are of
course possible. In particular, the processes of recovery
have been thought of as part of a control strategy, but in
other situations these might occur naturally and � may
vary between 0 and 1. Furthermore, although the model
studied is simple, it allows for local interactions of
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Figure 2. System's evolution: P [1] (upper curves) and P [11] (lower curves) with J1 � 0:01, J2 � 0:25 and random initial
condition with P0 � 0:001. (a) and (b) � � 0, in (b) the infection level grows steadily up to P �1� � 0:2 in the absence of recovery
(R � 0), after which R is set to 1 and the level stabilizes; (c) and (d ) � � 1, the same conditions as in (a) and (b).

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


arbitrary strength in both the disease spread and control
processes. It is therefore su¤ciently complex for the
results to suggest a wide potential of cluster approx-
imations for studying more complex processes in
epidemiology and ecology. In fact, it is our belief that the
addition of further local states and other features to the
model would not, in essence, change the present conclu-
sions as long as the interactions remain short-ranged.
In particular, our expectation of how model behaviour

and approximation performance would vary by changing
the range of interactions is as follows. The addition of

¢nite-range interactions beyond NNs (e.g. decaying
exponentially with distance) would increase the number
of `reaction pairs' at any time and reduce the hetero-
geneity of mixing between susceptibles and infectives.
This would bring the system closer to the conditions
assumed in the MF approach, so the MF prediction
would become more accurate though still overestimating
the level of infection. The PA prediction would still lie
between these two bounds. While the location of the
critical threshold will depend on the details of the inter-
actions, critical behaviour should not be a¡ected. In the
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Figure 3. Snapshots of the system at three di¡erent time instants: along the evolution plot in ¢gure 2b (a) t � 4:37; (b) t � 4:80;
(c) t � 8:10, and with � � 1 but a comparable level of infection (J2 � 0:8, J1 � 0:01) (d) t � 2:17; (e) t � 2:48; ( f ) t � 5:65).
Dots represent infected hosts.

Figure 4. A con¢guration of the system in the stationary regime corresponding to di¡erent values of (J1,J2,�): (a) (0.001,1.01,1),
P �1�1 ' 1%, t � 111:2; (b) (0,0.417,0), P �1�1 ' 4%, t � 727:5; (c) (0,1.287,1), P �1�1 ' 1%, t � 340:202. Dots represent infected
hosts.
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extreme case of interactions which are not exponentially
bounded important modi¢cations should occur in spatial
structure (see, for example, Minogue (1989), Shaw (1995)
for models without recovery), as well as in critical
behaviour. Disease patterns might then display long-
range correlations and, in the transient regime, resemble
those observed near the critical threshold (¢gure 4).
There are several practical bene¢ts arising from the use

of cluster approximations and the e¤cient description of
system behaviour o¡ered by them. Even though the
resulting system of di¡erential equations may require
numerical solution, the computational demands for this
are orders of magnitude less than for simulation of the
stochastic model.This di¡erence may not be of great prac-
tical signi¢cance so far as investigating model behaviour
for a single parameter set is concerned. However, in cases
where stochastic models are ¢tted to experimental data
(e.g. Gibson 1997) large uncertainty in parameter esti-
mates is typically found. Predictions of system behaviour
using the ¢tted model must take account of this uncer-
tainty by considering a space of parameters. Exhaustive
simulation of the full stochastic model over this space may
not be feasible and the availability of deterministic approx-
imations may be valuable. Moreover, there is a well-estab-
lished body of mathematical methods, such as stability
analysis, which can be applied to the deterministic cluster
approximations to characterize their behaviour over para-
meter space. These methods can yield a priori insight into
the general model behaviour and provide guidance on an
appropriate range of parameter sets on which to base a full
stochastic study. These advantages will be even more
apparent when studying stochastic models of greater
complexity than considered here.

We are currently investigating modi¢cations to the PA
method that may lead to more accurate predictions. One
way to progress, is to note that the assumption made to
close the system of equations (5) and (6) is not unique
and that other assumptions may lead to di¡erent approxi-
mate solutions. For example, for � � 1 (the case of worst
performance, ¢gure 1), it is possible to build an approach
that underestimates the size of the infected population,
thus providing us with both upper and lower bounds to
the exact solution (Filipe 1998). Another possibility is
based on rede¢ning the basic cluster (e.g. Sato et al. 1994).
Note that all terms in the sums (21) and (22) were
assumed to be equal, while in general we expect the
following inequalities

P�101�5P
1 0
1

� �
, P�111�5P

1 1
1

� �
, (28)

to hold between densities of triplets of NN sites. In fact,
in the con¢gurations on the right-hand side the extreme
sites (bold faced) are closer to each other and should
therefore be more strongly correlated. One attempt to
re¢ne the method may be to consider explicit equations
for the densities of NN and next-nearest-neighbour pairs.
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Agriculture, Environment and Fisheries Department. We thank
Chris Glasbey, Elizabeth Austin and Milena Maule for valuable
comments and suggestions on the manuscript.

APPENDIX A

In this appendix we derive equation (6). To obtain an
expression for dhSxSyi, with y � x� u, we note that the
probability that a susceptible at y becomes diseased,
given that one of its NNs is diseased, during (t, t � dt) is

Prob�Sx(t � dt) � Sy(t � dt)�1 j Sx(t)� 1, Sy(t)� 0�

� Prob(10! 11; x, y, t)

� �J1 � J2 (1� n0y(t))�dt, (29)

and the probability that at least one of the hosts in a
given pair of NN infectives is replaced by a susceptible
during (t, t � dt) is

Prob�Sx(t�dt) �Sy(t�dt)� 0 j Sx(t) � Sy(t) � 1�
� Prob(11 changes; x, y, t)
� R �2�� n0x(t)�� n0y(t)�dt, (30)

where n0x �
P

v0 6�u Sx�v0 excludes y, and conversely, the
summation n0y �

P
v0 6�ÿu Sx�u�v0 excludes x. Thus, the

expression for the variation of Sx Sy, during (t,t � dt)
reads

dhSx(t)Sy(t)i�hSx(t) �1ÿ Sy(t)�Prob(10! 11; x,y, t)i
�h�1ÿ Sx�t�� Sy(t)Prob(01! 11; x,y, t)i
ÿhSx(t) Sy(t)Prob(11 changes; x,y, t)i. (31)

Substituting the probability expressions into equation (31),
and using the assumptions of spatial invariance, one
¢nally obtains equation (6).
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